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Executive Summary

The combination of threats currently facing the remaining great apes requires immediate conser-

vation action at all scales — from site-level initiatives, through national and regional strategies, to 

international conventions and action plans. Baseline density estimates and subsequent monitor-

ing of ape populations are essential for assessing the impacts of particular threats and measuring 

whether conservation programmes are succeeding. 

This document outlines current approaches to great ape surveys and monitoring for field biol-

ogists, protected area managers, government wildlife departments and the conservation com-

munity at large. Detailed, additional information on survey design, field methods, analytical 

approaches, and practical considerations such as logistics, finance, and standardised reporting, 

form Sections 3 to 8, which are available online and can be downloaded at http://apes.eva.mpg.

de/guidelines.html. These guidelines are mostly web-based to allow continuous revision and to 

supply updates as field methods and statistical packages improve with time. It should be kept 

in mind that there is no “best” survey method that suits all purposes, and is efficient, precise, 

reliable, simple and cheap at the same time. An effort has been made not simply to repeat texts 

that already exist in the literature, but to provide real and practical guidance that may not exist 

elsewhere. Some key texts by other authors, such as Blake (2005) and White and Edwards (2000), 

can be found at http://apes.eva.mpg.de/documentation.html. A bibliography and resource lists 

that provide contacts for further information and funding (Annex I) and for obtaining GIS data 

(Annex II) conclude this document. 

The conservation of wild great apes requires a detailed understanding of their population size, 

spatial distribution and demographic trends. Survey and monitoring programmes are designed 

to provide exactly this kind of information. Ideally, survey and monitoring data permit evaluation 

of the sources and impacts of threats, such as hunting, habitat degradation and fragmentation, 

disease and natural catastrophes. They should enable identification of areas of high conservation 

value and evaluation of the effectiveness of protection and management strategies. However, in 

reality the conservation status of most wild ape populations is still poorly known. Great apes occur 

at low densities throughout their range, and often in remote places with difficult access. When 

these factors are combined with their cryptic nature, the implementation of efficient survey and 

monitoring programmes is notoriously difficult. As a result, action plans issued for both African 

and Asian great apes over the past few years have emphasized the need to properly document 

the conservation status of wild populations (e.g., Kormos and Boesch 2003; Singleton et al. 2004; 

Tutin et al. 2005). Examining the distribution and intensity of threats, and current great ape distribu-

tions helps in the identification of the best sites for new protected areas, and provides empirical 

data to evaluate existing management strategies in protected and non-protected areas harbouring 

great ape populations. Finally, these data are essential for IUCN Red List of Threatened Species™ 

assessments, which should be based on actual population size and status.

Surveying most great ape 

populations requires long walks 

in remote forests. Here a team 

is looking for orangutan nests 

during a combination of recce 

walks and line transects in the 

forests of Sabah, Malaysian 

Borneo.

Photo: © M. Ancrenaz

http://apes.eva.mpg.de
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Section 1. Introduction 

1.1. Overview

From the beginning, biologists studying great apes have been producing maps of their geographic 

distributions. Population size estimates followed, which ranged from “best guesses” based on 

interviews with local hunters or foresters at remote sites, through sample-based methods aimed at 

estimating a mean density across a large area, to fairly accurate head counts which assumed that 

most of the apes in an area of interest were known individually. Monitoring of great apes has most 

often consisted of long-term studies of focal groups, such as the chimpanzees of Gombe (Pusey 

et al. 2007) and Mahale (Nishida et al. 2003), and the mountain gorillas of Karisoke (Robbins et al. 

2001). However, it is neither feasible nor cost effective to habituate and monitor multiple groups of 

each great ape taxon over a large landscape. 

As habitat loss and fragmentation of humid forests became more widespread in the 1980s, and 

as it became known that hunting and illegal killing were taking direct and heavy tolls on great 

apes throughout their range, concerned scientists began to consider whether it was possible to 

estimate the size of entire populations of a given species and monitor changes in their distribu-

tion and abundance (Ghiglieri 1984; Tutin and Fernandez 1984). A major indirect threat to great 

apes is conventional industrial logging, which alters their habitat and most importantly creates a 

network of roads through the forests, allowing hunters and agriculturalists easy access to previ-

ously remote territory (thus facilitating both hunting and further habitat loss). Civil unrest pushes 

displaced people into remote, uninhabited forests where they disturb and may hunt larger species 

such as apes (e.g., Hart and Mwinyihali 2001; Kalpers 2001). Civil unrest also results in the prolif-

eration of automatic weapons. This in turn leads to increased hunting of wildlife, and a breakdown 

of law and order where wildlife protection laws are often the first to be ignored. 

A network of protected areas now exists across the forested humid tropics, where, in theory at 

least, apes are protected from hunting by law and the forests themselves are protected from 

logging or other human modifications. This combination of protecting the apes themselves and 

protecting large areas of good quality habitat should, in theory, have protected viable ape popula-

tions in perpetuity. However, it has recently become clear that infectious diseases and emergent 

pathogens also pose significant risks to the world’s great apes (Leendertz et al. 2006; Köndgen 

et al. 2008). In large parts of western equatorial Africa, gorilla and chimpanzee populations have 

been greatly reduced by Ebola haemorrhagic fever, which causes rapid and dramatic declines in 

A field technician in Gabon 

measures the perpendicular 

distance from a dungpile to a 

transect line. 

Photo © F. Maisels
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as little as a year (Bermejo et al. 2006). It is believed that this devastating disease has halved ape 

populations in the region within the last 20 years (Walsh et al. 2003, 2007). It has been estimated 

that, even if hunting and habitat loss could be halted today, it will take more than a century for ape 

populations in the areas so far affected by Ebola to fully recover. 

Survey and monitoring efforts must not only take into account the behaviour of great apes and 

the variables known to be associated with favourable habitat, but also collect information on all 

major threats that jeopardize their long-term survival. Specifically, information on human signs and 

covariates of disturbance should be recorded during surveys. Information on the location of roads 

and railway lines, navigable rivers, human settlements and newly developed agricultural schemes 

should also be recorded as these variables affect great ape distribution and density. 

Great apes build nests that consist of vegetative structures that can remain visible for weeks or 

months. Sample-based methods generally involve indirect counts of nests rather than direct counts 

of the apes themselves. Much effort has therefore gone into estimating the size of ape populations 

by counting their nests which (i) are much more numerous than their makers (ii) do not run away 

and (iii) are more visible. Nests accumulate over many months in any given area. Counting nest 

density thus allows us to estimate population density, assuming a standing crop of nests which 

decay at a given rate at a given site at a given season. Therefore, they are less sensitive than direct 

observations to short-term fluctuations in local density (due to seasonality). Repeated nest counts 

have been used to monitor the Virunga mountain gorillas since 1959. Some studies have concen-

trated on small populations based in and around existing protected areas, some on nationwide 

surveys, and still others have compared different survey and mapping methods to determine which 

was the most accurate, precise, or appropriate for different situations. 

To date, most surveys have been carried out using nest counts for a specific site-based pur-

pose. Many have been part of a research project, or a protected area monitoring programme. 

Many large areas have been surveyed only once, or not at all, due to lack of human and financial 

resources. Even where surveys have been undertaken recently, the results may not be precise 

enough to enable detection of change, whether positive or negative (Plumptre 2000). Another 

major problem is the conversion of nest counts into great ape population estimates. A constant 

fixed relationship between nest density and ape density does not exist. The rate of nest decay 

varies greatly between sites and seasons, so ideally surveys should incorporate a locally-derived 

and seasonally-appropriate estimate of nest decay rate. The data required to estimate nest decay 

can take more than a year to collect prior to the actual survey. This is rarely feasible when a series 

of sites across a nation or region is to be surveyed within a limited time (and budget). In addition, 

the sheer cost of covering large areas of wilderness on foot remains an obstacle to improving the 

precision and accuracy of survey and monitoring data.

Rarely have great ape survey and monitoring data for an entire country or species been centralised 

and examined for rate of decline or for changes in past and current geographic distribution. Most 

raw data and reports are scattered in desk drawers and filing cabinets or on hard drives or ageing 

discs. The recently established web-based Ape Populations, Environments and Surveys “A.P.E.S.” 

database (http://apes.eva.mpg.de) aims to centralise all great ape survey data, past and present. 

Analysis of these data will allow changes in great ape distribution and numbers to be tracked by 

and for the global conservation community. Government agencies in the great ape range states 

and international conservation agencies such as IUCN will be able to make informed decisions 

based on these data, which will provide a more comprehensive picture of great apes at the species 

and population level, not just the site-based information which exists today. All holders of relevant 

data are encouraged to contact A.P.E.S. (email apes@eva.mpg.de). 

1.2. Scope of these guidelines

Most great apes live in dense tropical forest with poor visibility. Only in a very few cases can we 

count apes by direct observation. In the vast majority of cases we must rely on indirect signs or evi-

dence, namely nests or dung. The tricky part is to translate the frequency with which these objects 

occur in the habitat into some measure of ape abundance. A variety of survey methods have been 

developed, and an overview is given in the next section, Section 2. 
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Survey results cannot be extrapolated from one region to another 

because ape density has been shown to vary dramatically even 

over small spatial scales. The relationship between the number 

of nests counted at one location and the number of apes pro-

ducing them might be very different at another location due to 

variation in conversion factors (nest production, nest decay) or to 

differences in habitat between sites. Therefore, we must choose 

an appropriate survey design, one which will allow us to obtain a 

representative sample from the area of interest. Section 3 (online) 

discusses Survey Design and gives examples.

Ideally there should be adequate time and financial resources to 

conduct a well-designed survey of the area of interest. However, 

the unfortunate reality is that most projects have limited budgets 

and technical expertise. Section 4 (online) discusses Finance 

and Administration of Survey and Monitoring Projects.

The “garbage in, garbage out” data syndrome holds true for ape 

surveys. If the quality of data collected is poor, or the sampling 

design is not representative of the area of interest, we will have problems analysing and interpret-

ing the data. Sampling procedure should follow a strict sampling design and field protocol to 

ensure consistent data collection of the best possible quality. More details can be found online in 

Section 5 (Field Issues: Logistics and Data Collection Protocols) and Section 6 (Training).

Data Analysis is a fundamental part of every survey and monitoring project (Section 7 online). 

A variety of analytical procedures and software tools have been developed. It is worthwhile con-

sulting a professional statistician who is experienced in wildlife surveys and monitoring, when 

preparing a survey. 

Surveys are often conducted for a specific project, which ends with a final report or publication. 

Others are conducted as part of a protected area monitoring programme. These data are valuable 

and are needed to analyse population trends. The archiving of data is therefore an important issue, 

and is discussed in Section 8 (Standardised Reporting, online).

1.3. Defining terms and differentiating surveys from monitoring

Great ape populations show high variability in space and time in their behavioural and movement 

patterns. They may respond to seasonal changes in resource abundance or dispersion with dif-

ferent grouping patterns, differences in home-range use, habitat switching, and/or changes in 

activity patterns (Wich et al. 2004). They leave signs, such as nests, dung, or feeding remains, 

which decompose at different rates throughout the year generally related to rainfall and intensity 

of insect activity, especially for dung (Ancrenaz et al. 2004 a). Great apes behave more elusively at 

certain times than at others, and adapt their behaviour to persistent threats, such as hunting. Over 

a longer time-scale, density (number of individuals per unit area) might change as a result of natural 

or human induced factors. As a result, estimating ape abundance is a complex task.

Surveys: Establishing baseline abundance estimates

Surveys provide baseline information on species distribution and population size. Surveys assess a 

situation at a particular moment, whereas monitoring programmes are generally designed to detect 

progress towards a target situation. Sometimes, due to financial, logistical, or time constraints, ape 

surveys can only deliver abundance indices such as nest-group encounter rate, instead of total 

population size estimates. Different types of survey approaches exist and are appropriate to differ-

ent situations (see Section 1.4). 

Practical and budgetary constraints necessitate a compromise between ideal and achievable 

survey objectives. In an ideal world we would have accurate and precise density estimates for all 

ape populations, as this would allow for fully informed management and conservation decisions 

(status of a particular population, or value of a given area for protection of a sub-population). 

However, constraints may oblige the survey or monitoring programme to estimate only relative 

abundance indices (see below). In many cases, and especially outside protected areas, similar 

Young chimpanzee, Pan troglodytes verus.
Photo: © K. Hockings
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constraints may mean that after a survey is conducted, there is no follow-up. Relative abundance 

provides useful information on spatial distribution and population size (Greenwood 1996), and it 

can form the baseline for a future monitoring programme. However, baselines of absolute abun-

dance (when possible) are more informative. Surveys are also important when designing protected 

area networks, determining reserve boundaries or limits of corridors linking isolated populations, 

and when deciding where to invest time and effort in protection or research activities. 

Monitoring: Detecting population change

Monitoring refers to the regular, periodic surveying of a population through space and time. 

Monitoring programmes can be implemented simply to detect temporal changes in population 

size. Ideally a population, distribution, or density target is predefined, so that progress towards this 

target can be measured, and management actions can be taken to address identified problems. 

Interventions may be short-term to address immediate threats associated with population decline 

(e.g., antipoaching patrols), or longer-term remedial strategies based on analysis of longitudinal 

trends in both population status and threats. The latter can be based on a more sophisticated 

understanding of factors affecting ape population density, and can most usefully inform conserva-

tion management strategies. 

Population monitoring contributes to our understanding of the impact of threats, such as hunting, 

disease outbreaks, the effects of logging and habitat degradation and/or fragmentation, or the 

impacts of tourism activities, and can deliver basic information about the apes’ ecology and their 

responses to specific disturbance factors. Given the slow reproductive capacity of great apes, 

monitoring programmes should repeat surveys every one to five years. However, there is no gen-

eral rule for survey frequency. It depends on the species surveyed, the situation of a particular 

population and threat intensity. Shorter intervals between repeat surveys are better, as they will 

provide information for a time series analysis, but costs and staff considerations usually prevent 

this. The variance around the estimate in each survey should be small enough that significant 

trends over time are detected. 

Ideally large mammal and human-impact monitoring programmes should include regularly con-

ducted surveys. The design and timing of such a programme should allow easy and rapid detection 

of change. This will inform management about the spatial distribution and abundance of the spe-

cies of interest, and variation in these parameters over time and space — both seasonally and on 

a longer-term basis. Importantly, such a programme would contribute information on the sources, 

distribution, and intensity of threats (although this will usually be complemented by law-enforce-

ment monitoring specifically designed to gather data on threats). Biological and law-enforcement 

monitoring data can then be used to guide conservation actions (adaptive management), and to 

evaluate the success or failure of management strategies. In this document we provide information 

to aid managers in selecting cost-effective methods that address these key issues.

1.4. Sampling objectives and design

Different objectives require different sampling approaches, and no sampling regime is suitable to 

address all questions about the status of a population (more details in Section 2). It is absolutely 

vital to choose the most appropriate sampling design and statistical procedures to be used for 

data processing and analysis before embarking on either a survey or a monitoring programme. 

It is equally important to become trained in the field methods that are going to be used. A pilot 

study should be conducted, which not only contributes towards staff training, but also provides 

data on variance in encounter rates (number of objects encountered per unit of sample, such as 

nest groups per kilometre walked). A combination of the encounter rate itself and of its variation 

will determine total sampling effort (number of sampling units to be visited and/or total number of 

objects to be counted). If the objectives and design have not been correctly defined, the results will 

be at best inconclusive, and at worst inaccurate and misleading. The first step of every survey or 

monitoring project should be to carefully identify the goals of the study, the sampling design, and 

the analysis protocol before embarking on field activities. 

We can distinguish three broad categories of information that can be collected by means of a 

sample survey or census; these are outlined below in order of increasing complexity.
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Distribution is usually the easiest and cheapest information to obtain 

Objective: To map the occurrence, range, and distribution of a given species. 

These surveys range from the collection of basic presence/absence data, to some measure of 

relative density per unit area. They are also used to collect geographically specific information 

on sources of threat and on habitat preferences of the species of interest. Distributional surveys 

include recce (Walsh and White 1999) and occupancy methods (MacKenzie and Royle 2005). Under 

certain circumstances occupancy methods can also be used to estimate abundance (e.g. Royle 

and Nichols 2003).

Pros: Simple to conduct, do not require highly trained staff, or a high level of expertise for data 

analysis. Cheaper and faster to conduct than density estimates. These types of survey can con-

tribute to the identification of key habitats or sites for the conservation of a single species, a guild 

of species, or an important habitat type within which the species is known to occur (McGraw 1998; 

van Krunkelsven et al. 2000). 

Cons: Some methods are sensitive to interobserver differences, and variation in habitat or season-

specific species detectability, and do not provide absolute population estimates.

Abundance estimates through sample surveys 

Objective: To obtain an estimate of total population size for a certain area. 

Abundance estimates are obtained by sampling a subset of the population of interest. The current 

standard method for estimating ape abundance is nest counts using line transect distance sam-

pling. The size of the entire population in the predefined area is then estimated by extrapolating 

from the sample. A major assumption is that the sample is representative of the whole area, includ-

ing threats, topography, vegetation and altitude.

Pros: Provides more information about ape population status, when conducted properly, than 

simple presence/absence.

Cons: More cost and labour intensive than simple presence/absence. Requires higher-level train-

ing in data collection and analysis. 

Total count of a population (census)

Objective: To record all individuals present at a given time at a given location. 

Pros: Highly informative, and very accurate if assumption is not violated that all individuals present 

are counted once, and no individual is double counted. 

Cons: Rarely feasible with great apes, and precision cannot be calculated, since this method is 

based on the assumption that all individuals are counted. If animals are missed or double counted 

this is impossible to ascertain. 

Any of these survey methods can be used for trend estimation or to define management response 

by providing information about changes in population status and patterns of human impact, 

although to a different level of accuracy. The monitoring of population trends does not necessarily 

require an estimate of population size or density. Indices of ape abundance, such as the encounter 

rate of ape nests per kilometre walked, or the density of ape nests without converting to individual 

apes, can be used if certain requirements are met. However, great care must be taken as detection 

probability and sign decay may vary with season and/or rainfall.

1.5. Quantifying ape abundance 

The types of information and variables to be recorded in the field obviously depend on the goals of 

the survey. Methods need to be standardised before fieldwork begins so as to ensure the collection 

of good quality data. Effort should be made to standardise data with other sites/projects/surveys 

to allow comparability. Although other sections of this manual will detail these different variables, 

here is a brief overview. Parameters to be measured during ape surveys can be divided into four 

categories: great ape signs, human signs, habitat descriptors and climate factors. 
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Great apes and their signs

Indicators of the presence and abundance of great apes include direct observations, nests, dung, 

feeding remains, tools, footprints, vocalisations, carcasses, and verbal information provided by 

local people. These variables may be collected with a variety of different methods, depending on 

the objectives of a survey. Details are provided in the following sections. Keep in mind that conclu-

sive proof of the absence of a species in a given area will require prolonged study and/or repeated 

investigation (Ross and Neeve 2003). Instead, occupancy modelling provides probabilities of ape 

occurrence, even for sites at which no ape sign is detected (MacKenzie and Royle 2005). 

Human signs 

The type, distribution, and intensity of human activities affecting great apes and their habitats need 

to be quantified in order to assess their impact on great ape population size and spatial distribu-

tion, and on the probability of being able to effectively manage areas for improved survival of these 

species. 

Vegetation type and geographic features

Vegetation type is an important factor determining the distribution and abundance of food and 

shelter. In addition, predator abundance and distribution (including humans as predators) is partly 

determined by vegetation. Topography and the presence of natural barriers are also key factors. 

Vegetation can be described both qualitatively and quantitatively. A qualitative assessment uses 

descriptions of the major features encountered in the field, for example, a Raphia swamp, or a 

terra firma mixed forest. Quantitative descriptions use numerical values to document each feature 

(e.g., a 20% slope), or the percent botanical composition of different habitat types. The selection 

of variables to be recorded during fieldwork will be determined by the survey objectives, avail-

able timeframe, the skills of fieldworkers, and the size and current knowledge of the area to be 

investigated.

Climatic factors 

Additional information sometimes needed to interpret population distribution and change includes 

temperature, humidity, and rainfall. Their effects are probably greatest where they determine what 

the vegetation types are and how productive they are, and therefore how many apes the habitat 

can support. They will almost certainly have some bearing on disease occurrence and prevalence, 

and on human activities in the habitat. Climatic variables also affect rates of decomposition of 

nests, dung, and other sign. 

Land use classification 

The administrative status of the sites in which each ape sign is found (whether or not it is a pro-

tected area, mining or logging concession, etc) should be recorded, as more than 80% of ape 

habitat lies outside protected areas. 

Section 2. Review of Great Ape Survey Methods

2.1. Introduction

This section gives an overview of the variety of methods used to survey and monitor great ape 

populations. The most commonly used methods are monitoring of focal groups and conducting 

nest counts on transects. We also cover less frequently used approaches such as total counts and 

recently developed techniques such as helicopter surveys. The section closes with a summary on 

potential future developments such as genetic or camera capture-mark-recapture surveys that 

have been successfully applied to other large mammals. An extensive literature exists for most 

survey methods, and the reader is encouraged to obtain more details about the respective meth-

ods from the bibliography at the end of this document. 
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Table 1. List of survey methods 

Method Objective Pros/Cons Section

Distance sampling Presence/Absence
Distribution
Density and abundance

Well developed, robust, currently the standard ape survey method 2.2

Distance related methods Presence/Absence
Distribution
Abundance 

Easily applicable, prone to bias, if not carefully done 2.3

Index methods Presence/Absence
Distribution
Abundance index

Easily applicable, prone to bias, if not carefully done 2.4

Occupancy methods Presence/Absence
Distribution
Abundance

Not yet applied for ape surveys 2.6

Full counts Distribution
Abundance

Only rarely feasible, critical assumptions are easily violated 2.7

Capture-recapture surveys Abundance Ape ranging behaviour makes further development necessary 2.8

Genetic surveys (Minimum)
Abundance
Population structure

Theoretically highly accurate, methods for apes still in 
development, require high level of expertise

2.8

Camera trapping Presence/Absence
Distribution
Abundance
Population structure

Great potential, methods still in development 2.8

Home range estimator Abundance Only rarely used, method needs further development 2.9

Interview techniques Presence/Absence Provide rapidly information on ape occurrence over large area
Often inaccurate

2.10

Survey objectives need to be clearly defined. For example, do we want to know the spatial distribu-

tion of apes at a given site, or do we want to know the number of individuals in a given population? 

Are we most interested in the temporal trends of a population and their causes, or do we need to 

know the causal factors of population density gradients? Not every survey method can address 

these questions simultaneously. Depending on the objective of the survey, different approaches 

are required (Table 1) and decisions need to be taken on the design and the data to be collected 

(Box 1). 

2.2. Distance sampling methods 

Currently the most widely used approach is distance sampling, which has been described exten-

sively (Buckland et al. 1993, 2001, 2004). Distance sampling can be based either on the detection 

of animals themselves or on their signs (also called cues) such as nests and dung on predefined 

transects. 

Observers applying distance sampling techniques follow either 

a series of line transects or cover a series of point transects. In 

either case, information (perpendicular distance, radial sighting 

distance and angle, or simply radial distance for point transects) 

is collected to allow calculation of the shortest distance from 

the line or point to detected objects of interest (individual ani-

mals, animal groups, nests, etc.). With the exception of objects 

on the transect line or at the centre point, it is not assumed 

that all objects are detected. This is especially useful in forest 

habitats with limited visibility, where the probability of detect-

ing an object decreases rapidly with increasing distance from 

the observer. Distance sampling uses statistical tools to esti-

mate the drop-off in detection probability with increasing dis-

tance from the observer and to ultimately infer the true object 

abundance (Whitesides et al. 1988; Buckland et al. 1993, 2001, 

2004). Probability of detection is modelled as a function of the 

observed distances and then combined with encounter rate 

Box 1. The decisions required in  
preparation for great ape surveys 

Based on the objective of the survey, decisions need to 

be made about:

1) Objects to be recorded: Nests, Dung, 

Feeding Signs, Footprints, Individuals, DNA, 

Vocalisations 

2) Survey approach: e.g. Transect survey, Recce 

survey, Plot survey, Full count, Aerial survey, 

Capture-Mark-Recapture Survey.

3) Auxiliary variables: e.g. Nest decay rate, 

Deposition/Construction rate, Group size. 
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Box 2. Critical assumptions underlying 
distance sampling theory

1) Line or point transects are located randomly with 

respect to the distribution of the animals or objects of 

interest.

2) All animals or objects directly above or on the line or 

point must be detected. 

3) Distance to animals detected is recorded at their initial 

location, before they move towards or away from the 

observer.

4) Sightings are independent events.

5) Distances and/or angles are measured accurately and 

precisely.

(and estimated group size, if groups are the unit of observation) to calculate the density and abun-

dance of objects of interest in the study area. As long as a random sample is obtained by means of 

a well-designed survey, and the number of objects and the distance from each object at its initial 

location to a point or to a line is recorded accurately, reliable density estimates for the objects can 

be obtained — even if an unknown number located away from the observer go undetected. This is 

a crucial aspect of distance sampling theory. 

Major assumptions of distance sampling 

The major assumptions of this method (Buckland et al. 2001) 

are outlined in Box 2. Surveys must be designed and conducted 

by people who are competent in distance methodology (see 

Section 3 Survey Design, online). Poorly designed surveys with 

improperly measured distances will result in inaccurate density 

estimates. Lines or points need to be placed randomly or sys-

tematically with a random start point. Establishing transects 

along existing roads or trails used by humans will not achieve 

good density estimates, because human presence is very likely 

to alter the ape abundance. Laying transects along unused 

roads or trails means that the habitat is not sampled in a repre-

sentative manner: roads and trails are often either on ridges or 

along waterways, thus over or under-sampling some habitats. 

Roads are also normally flanked by a corridor of secondary light-

loving vegetation, a relatively rare habitat in the forest matrix as 

a whole, and one preferred by some apes (e.g. gorillas).

Violation of the assumption that all objects located above and 

on the transect line are detected will create a major bias. Some 

objects (especially nests) can go undetected even if they are directly above the observer; this leads 

to underestimates of the true density (see van Schaik et al. 2005). Aside from detecting all objects 

of interest directly on/above the line or point, the distance measurement must be obtained with 

accuracy before there is any movement in reaction to the observer. If sightings are not independ-

ent events this does not bias the density estimate, but it does have implications for the estimate 

of variance. Hence for animals or objects that occur in groups (apes or nest sites), the group is 

the preferred unit of observation and the distance to the centre of the group is the information 

required. 

Assuming that these basic assumptions are met in the design and execution of field surveys, the 

software package DISTANCE (Thomas et al. 2006), which is free to download, is normally used 

to design surveys and to analyse survey data (to fit a detection function, and estimate density 

and sampling variance). See Section 7 Data Analysis (online) for more detail, and to obtain  the 

software and other information go to: http://www.ruwpa.st-and.ac.uk/distance/. 

Other factors to consider with distance sampling

Observer effectiveness: Several studies have shown that experience influences object detec-

tion (e.g., nest detection: van Schaik et al. 2005). Surveyors’ skills depend on several factors: 

a) Individual ability to detect objects: individual differences in vision, hearing, height and dedica-

tion will affect the number of nests detected during surveys. However, because distance sampling 

models the probability of detecting the objects of interest, keeping the same individual observers 

or observers of the same skill level throughout one sampling cycle will eliminate this first problem; 

b) Fatigue: it is important to keep survey sessions short. If surveyors feel tired, they will detect fewer 

objects and thereby introduce additional variability into the detection process; c) Concentration: 

if too many types of objects have to be recorded (e.g., multi-species survey), it is highly likely that 

detection probability and data quality (the accuracy of the distance measurements, for example) 

will be affected — in short, do not try to look for too many things at once. Normally one person 

should look up for tree nests and another observer should look down for ground nests (when appli-

cable) and for ancillary data such as dung, footprints, or signs of human activities.

http://www.ruwpa.st-and.ac.uk/distance/
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Environment: Environmental variables and seasonality are likely to determine the number of 

objects detected by affecting encounter rates, the detection process, or even group sizes: such 

environmental factors include weather (wind, rain, available light, angle of the sun), forest structure 

and composition, forest height, and so on (Bibby and Buckland 

1987). Physical features of the survey area also affect observ-

ers’ abilities to detect individuals, nests and other signs: harsh 

conditions (steep areas, marshes, rivers, thick vegetation), 

for instance, hamper efficient detection or change encounter 

rates. However as long as these factors are recorded for each 

object detected, they can be included in analyses as covari-

ates. Similarly, recording variables that are likely to influence 

encounter rates (e.g., noting when habitat type changes) allows 

for post-stratification by these variables during analysis.

Adequate sample size: A minimum of 60–  80 observations is 

required to fulfil the basic requirements of distance sampling. 

However, considerably larger samples are required to generate 

reliable estimates of other values critical to estimating densities 

and population sizes (see online Section 3 Survey Design and 

Section 7 Data Analysis). In areas with low densities of objects 

(nest groups, individuals) these minimum numbers of observa-

tions can be difficult to reach unless substantial effort is allo-

cated to the surveys. Because nest groups are often clumped 

within suitable habitat, it is important to determine a transect 

length that will be long enough to minimise the probability that 

there are zero nests on any given transect. Examination of exist-

ing data from the area or data from a pilot study can inform this 

important decision. 

Distance sampling on line transects

The line-transect is a plotless method in which the observ-

ers walk along straight lines of known length, which are either 

placed randomly or systematically across the survey area (see 

Box 3). The area sampled along a line transect is the hypotheti-

cal area in which all sign or animals are assumed to have been 

detected. This area is equal to 2 Lμ, where L is the total length 

of the transect and μ is the width of the strip within which the 

number of objects missed is equal to the number seen beyond 

this distance). μ is known as the effective strip width and is 

determined using Distance software.

To estimate μ, perpendicular distances from target objects 

detected on a transect line must be recorded accurately. 

Sometimes, to ensure that the assumptions underlying dis-

tance sampling are met, the sighting/radial distance and angle 

(which can be used to calculate perpendicular distance) are 

recorded instead; this mostly applies to observations of live ani-

mals. Methods using sighting distances also require a sighting 

angle to calculate perpendicular distance and hence to estimate 

density (reviewed in Hayes and Buckland 1983). It is generally 

recognised that this sighting distance and angle method is sta-

tistically invalid compared to the perpendicular distance method 

(e.g., Plumptre and Cox 2006). 

Perpendicular distances can be measured (or estimated) directly 

(ungrouped data) or placed in proper distance categories 

(grouped data). The latter should be considered as an option 

d2

d3
d4 d5

d6
d7 d8

d9

d1

Box 3. Line transect sampling

A single transect line is shown. Circles represent target objects 

distributed in the area around the transect. The perpendicular 

distance of the nine objects actually detected is denoted as 

d1, d2…d8 (see Buckland et al. 2001).

Box 4. Aerial orangutan nest survey 
in Sabah, northeast Borneo

Surveys in Sabah were carried out with a small Bell 
206 Jet Ranger aircraft at a constant speed and height 
(70 km/h and 60–80 m above canopy). A systematic 
stratified sampling method using equidistant parallel line 
transects was designed, the location of the first line being 
randomly selected (see Ancrenaz et al. 2005 for detailed 
methodology). 

Nest detectability from a helicopter or fixed-wing aircraft 
depends heavily on forest canopy structure and observer 
ability. Ideally, specific models for deriving nest densities 
from aerial indices should be designed for different habi-
tat types and for different levels of observer skill. Before 
such models are designed, ground-truthing must be con-
ducted in different habitat types in order to validate a 
baseline model and to determine habitat-specific correc-
tion factors when necessary. Video cameras mounted on 
each side of the aircraft can record all sightings and the 
recording can be carefully analysed after the flight.

It is not possible to record nest distance from aerial 
transect lines, and thus it is impossible to derive oran-
gutan nest density estimates directly from these flights. 
Instead encounter rates are obtained. Aerial surveys are 
conducted in conjunction with a pre-calibrating stage 
based on nest surveys on the ground to obtain more tra-
ditional orangutan nest density estimates. A robust sta-
tistical model can then be developed, correlating aerial 
indices with orangutan nest densities. This model was 
applied to all forests in the State of Sabah for which only 
aerial data were available. In future it may be possible to 
group nest sightings into distance intervals either side of 
the aircraft, thus facilitating estimation of the probability 
of detection.
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only when it is impossible to obtain exact distances because grouping data severely restricts the 

options for analysis. Having collected exact distance data, one might still choose to group these 

data to deal with distance measurement problems; therefore exact distance data offer more flex-

ibility at the analysis stage. 

Aerial strip and line transect surveys 

In Sabah (North-East Borneo), aerial line transect surveys have been employed to survey orangu-

tan nests throughout the state (Ancrenaz et al. 2005). Aerial surveys significantly increase the area 

sampled per unit time. They also provide a means of surveying remote areas that are not readily 

accessible from the ground, and can be conducted in much shorter time and require lower human 

investment than typical ground surveys (Caughley 1974; Ancrenaz et al. 2004b). The utility of aerial 

surveys depends on the proportion of target objects that observers can accurately detect from the 

air; if substantially less than 100% of target objects are detectable from the air, then methods are 

needed to correct observed values (see Box 4).

Aerial nest surveys will likely be of little use in Africa, because African great apes nest lower in the 

canopy or even on the forest floor and nests are hidden by the canopy. It may also be impossible 

to distinguish between gorilla and chimpanzee nests from the air in areas where the two species 

are sympatric. However, aerial surveys could prove useful to determine population distribution and 

relative abundance in open landscapes, such as savanna mosaics in West Africa.

Distance sampling on point transects

Point transects (or Point Counts) can be thought of as line transects of zero length. A series of 

points is investigated and the radial distance between detected 

objects and the centre point are measured (see Box 5). In prac-

tice, a series of points is located along a straight line. In point 

transects, only the area at the centre point can have a detec-

tion probability of one. The area searched on point transects is 

A = π r2, where r is the estimated effective radius. 

2.3. Distance-related methods — strip transects and plots

Strip transects give a total count within a given rectangle (or 

quadrat) of known length and width, thus area. No distances 

are measured during strip transect sampling; but this method 

requires that all objects in the strip are detected. With great 

apes, this assumption is likely to be violated, especially in 

forest, because the observer only walks down the middle and 

may miss objects at the edges of the strip, leading to an under-

estimate of true density (e.g., Vincent et al. 1996). Therefore, a 

modified approach has been used to survey orangutan nests in 

a Bornean swamp forest: Circular or box-plots of a fixed size 

were randomly located on a map and delineated in the forest. 

Their boundaries were clearly marked, and plots searched thor-

oughly to count all objects within these plots. This approach pre-

supposes a finite population sampling theory (Cochran 1977), 

where the exact size of a survey area is known in advance and 

where all objects in the sampling area are detected. Plot counts 

produced a significantly higher nest density estimate than 

line transects, and came close to the estimated true density 

obtained via other approaches (van Schaik et al. 2005).

2.4. Index sampling

Index sampling provides encounter rates, which are assumed to be proportional to actual densi-

ties. These are often easier to obtain than density estimates. However, such indices may reflect 

variance in factors other than density. They may also reflect differences in detection probability 

between observers and between vegetation types, or variation in production rates, decay rates, 

r5r1

r4

r2

r6

r10

r7

r8

r9
r3

Box 5. Point transect sampling

The radial distances of the 10 objects detected are denoted 

as r 1, r 2…r10 (see Buckland et al., 2001). The circle represents 

the maximum distance from the centre at which objects are 

detected.
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and clumping of nests or dung. Possible sources of variation 

should be carefully considered when using indices, and controls 

should be established to interpret and minimise such variation, 

such as plotting cumulative number of observations per unit 

distance and sampling until the plotted curve levels out. 

Reconnaissance walks. The basic principle of reconnaissance 

or “recce” walks is to walk in a predetermined direction taking 

the path of least resistance through the survey area (Walsh and 

White 1999). “Guided” recce walks should deviate no more than 

40° from a predetermined direction; they are considered more 

informative than “travel” recce walks, which can deviate by any 

degree. Data collection is the same as on line transects (number 

of objects, distance along the line, associated ancillary data), 

except that perpendicular distances are not recorded and the 

width of the strip sampled is fixed (usually 1 m either side of 

the observer) to minimise variation in visibility between habitat 

types. Recce walks are often used in survey pilot studies; they 

are valuable in allowing surveyors to become acquainted with a 

study area (vegetation, topography) and to familiarise themselves with detection of different signs. 

Recce walks are also used to collect data on the spatial distribution of a species. Even though 

these indices can be useful to some extent, it should be kept in mind that recces do not provide 

an unbiased sample of the area, and variation in recce encounter rates is very likely to result from 

a variety of sources and not just variation in density. Biomonitoring protocols often combine line 

transects with recces (Box 6). 

2.5. Direct vs. indirect surveys

Direct Surveys. These are counts of individual animals or groups of animals, and are possible if 

animals are easily detectable and move slowly with respect to the observer. This is unfortunately 

not usually the case with great apes, which tend to be shy and elusive. For known communities of 

great apes, direct monitoring is more likely to be possible and it can provide evidence of fluctua-

tions in ape population size (Boesch and Boesch-Achermann 2002; Bermejo et al. 2006; Pusey 

et al. 2007). Most line transect surveys of African great apes count groups rather than individuals. 

This is required to meet the criterion of independent observations, which is more likely to hold true 

for groups than for individuals. However, it is also important to count all individuals encountered in 

groups, and to factor the mean and standard deviation of group size into estimates of density and 

population size. 

Indirect surveys. Because direct surveys of great apes are rarely feasible, the majority of sur-

veys are conducted using indirect traces of ape presence. Signs (or cues) of ape presence are 

counted, not individual apes or groups. The easiest to see and the most numerous are ape nests. 

Other signs, such as dung, can also be counted, but this proves almost impossible for the strictly 

arboreal orangutans. Indirect surveys aiming to provide density estimates of apes must be based 

on known rates of production of the target objects and of their decay, and the proportion of the 

population that actually leaves the ‘detectable’ signs, so that ape density can be calculated from 

the density of indirect signs. Results obtained by indirect surveys should be validated against esti-

mates of true density, whenever possible.

While the goal of surveys is to detect true temporal or spatial variation in ape population size, indi-

rect surveys may yield different density estimates for a number of reasons that are unrelated to real 

variation in ape abundance. Some sources of sampling error, such as differences in methods, vari-

ation in skill among survey teams, and differential detectability of nests in different forest types can 

be readily addressed through training, analytical tools, and use of standard protocols. However, 

other sources of error are more difficult to control. The largest source of error when calculating 

ape density estimates from nest survey data is the estimate of nest duration. Nest duration (i.e., 

the mean time for which an ape nest remains visible) varies substantially both within and between 

areas for a wide range of factors, including rainfall, altitude, soil pH, nest height and exposure, and 

nest tree species (van Schaik et al. 1995; Singleton 2000; Buij et al. 2003; Ancrenaz et al. 2004 a,b; 

Box 6. Recces combined 
with line transects

 A section of a survey design is shown. The transects 

(short solid lines) are connected by guided recces (dashed 

lines). Perpendicular distance is measured only along the 

line transects. 
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Johnson et al. 2005; Marshall et al. 2006, 2007; Mathewson 

et al. 2008). Density estimates may also be influenced by the 

choice of observation unit (individual nests vs. nest groups). 

Morgan et al. (2006) found that density estimates based on nest 

groups produced estimates 15-20% higher than those derived 

from individual nests. However, too few studies are available to 

explain the causes of this difference. Survey teams and manag-

ers must be aware of both the magnitude and direction of the 

effects of different types of sampling error on population density 

estimates. Only after careful consideration of sources of sam-

pling error is it possible to assess whether different density esti-

mates reflect true differences between survey sites or periods.

Nest counts

Weaned individuals of all great ape species build nests in which 

they sleep at night or sometimes rest during the day. Nests 

can remain visible in the forest for several weeks or months 

after construction and use. Therefore they are encountered 

at much higher rates than the apes themselves, resulting in a 

large number of data points during surveys and a correspond-

ingly better precision of resulting estimates, assuming that the 

variables used to calculate density (i.e., production rate, decay 

rate) are also estimated with reasonable precision. Furthermore, 

nests are immobile, which makes the determination of perpen-

dicular distances and group size much easier compared to 

detections of the apes themselves. It is important to distinguish 

inter-specific differences between nest characteristics in areas 

where two great ape species are sympatric (Tutin et al. 1995). 

Sanz et al. (2007) have shown that with the collection of a few 

additional nest characteristics, nests of chimpanzees and gorillas can be reliably distinguished. 

Special attention also needs to be made not to confuse ape nests with those built by other species. 

In Asia, giant squirrels, sun bears or some bird species (adjutant storks, raptors) make nests that 

novice observers can mistake for orangutan nests. This calls for careful training of observers. 

Two types of nest counts are used, standing crop nest counts (e.g., Tutin and Fernandez 1984; Morgan 

et al. 2006) and marked nest counts (Plumptre and Reynolds 1994, 1996; Hashimoto 1995; Furuichi 

et al. 2001). For the standing crop method, all nests encountered are recorded. For the marked-nest 

count, only nests that have been built recently (i.e., those built since the initial or previous survey) are 

recorded during repeated passages. Both methods require auxiliary variables or conversion factors to 

convert nest counts to ape abundance. The standing crop method requires a nest construction rate 

and a nest decay rate; the marked nest method needs only the former (see Box 7). This difference 

leads to pros and cons for both methods in terms of survey efficiency and precision (see below). 

Determining auxiliary variables to use as conversion factors

Quantifying auxiliary variables is not a simple task, since there is no static relationship between 

ape nest density and ape density. Nest decay rate and nest construction rate show high spatio-

temporal variability (e.g., Walsh and White 2005). Therefore, ape surveys that rely on rates taken 

from the literature (see Table 2), instead of site- and temporally-specific rates, are likely to produce 

large biases (e.g., Mathewson et al. 2008). For example, Sumatran orangutans regularly make day 

nests at midday, but most Bornean orangutans do not (Ancrenaz et al. 2004 a).

Marked nest counts

Marked nest counts do not require nest decay rates (Plumptre and Reynolds 1994, 1996; Hashimoto 

1995; Plumptre and Cox 2006). During a marked nest count survey, transects are walked repeat-

edly and only nests constructed between two transect visits are counted. Since the time elapsed 

between transect visits is known precisely, nest density can be translated into ape density without 

Box 7. Converting nest counts 
into ape density

Standing crop nest count

all_nests
ˆˆˆ

ˆ
=Apes

DD̂
p× r × t

where nestsallD _ˆ  
 is the estimated nest density of all 

nests,  p̂   the estimated proportion of nest builders, r̂  the 

estimated rate of nest production per day per individual, 

and t̂   the estimated mean life span of a nest, in days.

Marked nest count

recent_nests

ˆˆˆ

ˆ
=Apes

DD̂
p×c × r × d̂ 

ˆ _nestsrecentD  is the estimated density of only recently 

built nests, ĉ the proportion of nests remaining until the 

next census in fresh or recent age classes, and d̂ is the 

inter-visit interval, in days, between first/previous and 

revisit for the marked nest count method.
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needing to estimate nest decay rate, as long as the interval is sufficiently short to assume that 

no nests have disappeared (completely decomposed) during the interval. However, recently built 

nests will be encountered at a very low rate unless ape density in the area is high. Therefore much 

more effort has to be invested to yield a nest encounter rate and a precision comparable to stand-

ing crop nest counts. 

The premise of the marked nest method is that all existing nests along transects will be marked 

and subsequent surveys will be repeated at short enough intervals so as to record all nests con-

structed since the last passage. A two-week interval has been used to survey chimpanzee nests 

in East Africa (e.g., Furuichi et al. 2001), although intervals of up to six weeks are used to survey 

orangutan nests in Sabah, Borneo. It is important that ape nests are not being created and dis-

appearing between two successive passages, which would result in an underestimation of ape 

density. This could be of particular concern for gorilla nests, which show variable decay rates 

depending on nest type and construction (Tutin and Fernandez 1984). Intervals between passages 

should be shorter to take account of the short decay rates of some types of gorilla nest. We should 

also mention that repeated surveys can be time and labour intensive, particularly in remote areas 

where logistical support is limited.

Nest decay rates

Nest decay rate varies with great ape species, nesting tree species, forest type, and abiotic param-

eters such as rainfall, altitude, temperature, soil type and pH (van Schaik et al. 1995; Buij et al. 

2003; Ancrenaz et al. 2004 a; Walsh and White 2005; Marshall et al. 2006; Mathewson et al. 2008). 

Because of the large variations associated with these parameters, any attempt to extrapolate 

decay rates from published studies to any other survey is liable to produce serious errors in density 

estimation. Such generalisations have been the cause of inaccuracies in some density estimates 

(Ancrenaz et al. 2005).

Nest decay rate needs to be estimated such that it reflects the temporal and site-specific decay 

rate of nests encountered at or close to the time of a survey. Environmental conditions before a 

survey are not necessarily the same as those afterwards or at any other time. Nest decay rates 

determined independently of a survey are very likely to be unrepresentative of the survey itself. The 

most reliable estimates for nest decay rate are obtained by direct monitoring of the survival of a 

sufficient number of nests (Buij et al. 2003; Ancrenaz et al. 2004 a) through multiple visits before a 

survey, although admittedly this can take several years to complete. 

Table 2. Spatial variability in nest decay rates. The large differences clearly demonstrate the need for site- and survey-specific decay rate 

estimates

Species
Estimated decay 

time [days]
Location Source

Bonobo 76
99

Southwest Salonga, DRC
Lomako, DRC

Mohneke & Fruth 2008
van Krunkelsven 2001

Chimpanzee 73
90

106
111
114
221

Taï, Côte d’Ivoire
Goualougo, Congo
Lopé, Gabon
Kibale, Uganda
Belinga, Gabon
Fouta Djallon, Guinea

Marchesi et al. 1995
Morgan et al. 2007
Hall et al. 1998
Ghiglieri 1979
Tutin & Fernandez 1984
Ham  1998 

Gorilla 54
78
90

170

Belinga, Gabon
Lopé, Gabon
Goualougo, Congo
Ngotto, CAR

Tutin & Fernandez 1984
Tutin et al. 1995
Morgan et al. 2007
Brugière & Sakom 2001

Orangutan 81
145
202
217
228
250

258 / 399
319
602

Ketambe, Indonesia
Danau Sentarum, W. Kalimantan, Indonesia 
Kinabatangan, Malaysia 
Central Kalimantan
swamp forest Suaq Balimbing, Indonesia 
Ketambe, Indonesia 
Gunung Palung, W. Kalimantan, Indonesia 
hill forest Suaq Balimbing, Indonesia 
Lesan, E Kalimantan, Indonesia 

Rijksen 1978
Russon et al. 2001
Ancrenaz et al. 2004 a
Morrogh-Bernard et al. 2003
Singleton 2000
Buij et al. 2003
Johnson et al. 2005
Singleton 2000
Mathewson et al. 2008
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The definition of when a nest is considered to have decayed is a problematic issue, for which no 

satisfactory solution has been found up to now. Usually nests are categorized into four or five age 

classes (fresh, recent, old, rotting). However, this classification is subject to interobserver differ-

ences, and prone to bias estimates of nest decay time. A more objective measurement of nest 

decay state is needed. 

Retrospective decay rate estimate using two visits

An approach previously suggested is to estimate decay rate retrospectively based on only two 

visits per nest site (Laing et al. 2003). The idea behind this approach is that environmental con-

ditions before the survey determine the decay rate and thus the standing stock of nests at the 

time of surveys. This method requires that freshly constructed nest sites are located in a spatially 

representative manner across the survey area. The search for these freshly constructed nest sites 

should be repeated during at least six regularly spaced missions in the time leading up to the 

survey. The first of these missions should be scheduled such that most of the nests detected have 

decayed by the start of a survey. At the beginning of a survey, the number of decayed/surviving 

nests (using objective criteria) at a site is then determined, from which decay rate can be estimated 

using logistic regression. In addition, this approach allows the inclusion of covariate information 

such as habitat type, rainfall or tree species. 

Since no survey is instantaneous, ideally this approach is repeated for each subregion of the 

survey area. This is labour intensive and requires a lot of travel effort, but in return this approach 

will deliver reliable site and temporally-specific nest decay rate estimates. 

Markov chain methodology

Due to the substantial time investment required to monitor the decay of a sufficiently large sample 

of nests to provide accurate estimates of nest duration, a number of studies have used Markov 

chain analysis to estimate nest duration (van Schaik et al. 1995; Russon et al. 2001; Buij et al. 2003; 

Morrogh-Bernard et al. 2003; Johnson et al. 2005; Mathewson et al. 2008). This technique uses 

matrix mathematics to estimate nest duration based on transition rates between predefined “decay 

states” (e.g., a freshly made nest; a nest with some dead leaves). One benefit of this technique is that 

it permits use of “censored” observations (e.g., nests that were not found soon after construction 

or that did not disappear within the study period), thus increasing sample sizes for analysis. Markov 

chain analyses allow the process of nest decay to be modelled and provide an estimate of t from 

as few as two nest surveys (van Schaik et al. 1995). When they have been calibrated against actual 

decay rates, Markov chain analyses tend to overestimate nest duration (van Schaik et al. 1995; Buij 

et al. 2003; Johnson et al. 2005) because longer-lasting nests are more likely to be recorded. A cor-

rection factor is usually applied to provide a more accurate estimate of nest duration. This correc-

tion factor is calculated by comparing observed nest duration with results obtained from a Markov 

analysis. Like nest duration estimates themselves, correction factors tend to be site-specific.

Predicting nest decay

It has also been suggested that nest decay rate can be to predicted from environmental covariates, 

such as temperature, rainfall, altitude, or pH (van Schaik et al. 1995; Buij et al. 2003; Walsh and 

White 2005). However, the extent to which these environmental factors reliably correlate with nest 

duration is unknown. In some cases, relationships established at one site have failed to accurately 

predict nest decay at other sites. For example, while pH might correlate with nest decay rate in dry-

land forests in Sumatra (Buij et al. 2003), it has proved unreliable at two sites in Borneo (Johnson 

et al. 2005; Marshall et al. 2006). 

Nest construction rates

A second variable required for both nest count approaches is nest construction rate. This is the 

number of nests built on average by an individual per 24 hr period. Nest construction rates cannot 

be determined during a survey. Rates are usually derived from observations of habituated apes resi-

dent in the survey area or in similar habitat, which is why only a very few nest production rate esti-

mates are available. Bradley et al. (2008) have shown that gorillas may build more than one nest in 

a single night; at other times sleeping on bare ground. Such habits are likely to vary both seasonally 
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and spatially, and will influence the standing stock of nests. Therefore, if nest construction rates 

have been taken from published studies, density estimates should be interpreted with care, as this 

(usually unknown) rate influences the standing stock of nests and thus the estimate considerably. 

Nest construction rates are needed to accurately convert nest density into individual density, and it 

should be kept in mind that nest construction rates may show spatiotemporal variation (Table 4). 

Re-use of nest and other issues

Great apes occasionally re-use nests (e.g., chimpanzees: Plumptre and Reynolds 1996; gorillas: 

Iwata and Ando 2007; orangutans: Ancrenaz et al. 2004 a). Direct monitoring of a sufficient number 

of nests will theoretically take into account the fact that some nests are used twice (since a few 

nests in the samples can be expected to be re-used). This behaviour must also be taken into 

account when estimating daily production rates.

In some highly disturbed areas of East Kalimantan rates of up to 10% nest re-use have been found 

in areas where few nest-site choices were available. This suggests that nest re-use is not uniform 

across habitats, but a function of nest-site availability. Applying nest decay estimates from areas 

where nests are heavily re-used to areas where they are rarely re-used, or vice versa, could seri-

ously bias results.

The issue of duration of visibility should also be noted. It is one thing to monitor nests over several 

months, or years, checking each month whether or not they are still visible. But, determining decay 

rates in this way is liable to overestimate decay rate, since many nests in the latter stages of decay 

may not be readily detected or identifiable as a nest during a one-off survey. This leads to potential 

overestimates of decay rates, unless there was a way to reliably cease monitoring a nest and class 

it as “gone”, at the exact same stage of decay that it would be at if it was no longer detected during 

a survey (van Schaik and Azwar 1991).

Proportion of nest-builders

By translating nest density into ape density, we miss infants who sleep with their mothers and are 

not yet constructing their own nests. In theory, if the proportion of nest builders in a population 

is known from habituated apes (see Table 5), this could be factored into a population estimate. 

However, the proportion of nest-builders is not a fixed constant, since the age structure of ape 

Table 5. Proportion of nest-builders (proportion of individuals who construct nests)

Species Proportion of nest-builders Location Source

Bonobo 0.7–0.81 Lomako, DRC Fruth 1995

Chimpanzee 0.83 Budongo, Kalinzu, Bwindi and Kibale, 
Uganda

Plumptre & Cox 2006

Gorilla 0.76–0.77 Bwindi, Uganda and Virunga Volcanoes McNeilage et al. 2006; Gray et al. in review

Orangutan 0.85–0.90 Borneo, Sumatra McKinnon 1972; Payne 1988; van Schaik 
et al. 2005; Ancrenaz et al. 2004 a; Johnson 
2005

1 Value approximated in Eyengo community excluding infants 

Table 4. Nest construction rates (nests per weaned individual per 24 h)

Species Nest construction rate Location Source

Bonobo 1.37 Lomako, DRC Mohneke & Fruth 2008

Chimpanzee 1.09 Budongo, Uganda Plumptre & Reynolds 1997

1.09 Goualougo, Congo Morgan et al. 2007

Gorilla 1.0 Goualougo, Congo Morgan et al. 2007

Orangutan 1.0 Kinabatangan, Sabah, Malaysia Ancrenaz et al. 2004 a

1.2 Gunung Palung, Malaysia Johnson et al. 2005

1.7 Ketambe, Indonesia van Schaik et al. 1995

1.9 Suaq Balimbing, Indonesia Singleton 2000
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populations varies through time and space. Therefore, estimates 

of proportions of nest-builders derived from habituated apes can 

be considered only as an approximation. 

Dung counts

Dung survey methods are widely used for many species, but are 

of limited use with great apes, since ape dung encounter rates 

are very low. One exception is the western lowland gorilla, for 

which dung counts may have some potential, as a recent study 

at Bai Hokou has recorded gorilla dung encounter rates com-

parable to those of nests (Todd et al. 2008). Dung counts can be conducted in the same manner 

as transect nest counts (methods above) (Plumptre 2000). In addition, the rapid decay of gorilla 

dung has the advantage that decay rates can be determined continuously during surveys, which 

eliminates the problem we face with nests. However, gorilla dung decay rates show enormous 

spatio-temporal variation (Kühl et al. 2007). Therefore, decay rates should never be extrapolated 

from one survey site to another. 

Methods of estimating dung decay rates during surveys have been published (Plumptre and Harris 

1995; Laing et al. 2003; Kühl et al. 2007); see also nest decay rates above. One issue of dung 

counts that needs to be factored into surveys is that piles of dung rather than single defeca-

tion events are counted. Therefore, dung pile production rate rather than dung defecation rate is 

needed to translate dung density into ape density. Estimates from Bai Hokou (Todd et al. 2008) are 

given in Table 6.

Gorilla dung counts have not yet been widely used. However, this approach may be useful in areas 

where nest counts are problematic because chimpanzees and gorillas are sympatric. 

2.6. Occupancy method

Objects to be sampled: All signs of great ape presence (nests, dung, feeding signs, etc.)

Sampling approach: Plots, point transects

Auxiliary variables: None needed

Occupancy surveys are used for many species, but have not yet been widely used for apes. 

Occupancy methods (e.g., MacKenzie and Royle 2005; Pellet and Schmidt 2005; Buij et al. 2007) 

use the fraction of sampling units, such as point transects, in which a species is present to make 

inferences about a species occurrence, range, distribution, and habitat selection. Their application 

is relatively easy and efficient. Occupancy methods use one or, more often, repeat visits to sample 

locations and evaluate whether a particular species is present. For apes, nests, dung, feeding signs 

and so on are indicators of presence. Several approaches have been developed to reduce “false 

negatives” (wrongly recorded absence) due to imperfect detection (e.g., MacKenzie and Royle 

2005). If certain assumptions are met, occupancy methods can also be used to estimate abun-

dance (e.g., Royle and Nichols 2003). As with all surveys, the study must be carefully designed. 

2.7. Full or complete counts

Objects to be sampled: Individuals, dung (DNA)

Sampling approach: Tracking, direct observation

Auxiliary variables: None needed

A full count or census presupposes that all objects present in a given area at the time of survey are 

detected and counted. Absolute population sizes are obtained. Complete counts are feasible only 

in relatively small areas, such as the 400 km2 Virunga Volcanoes range and Bwindi Impenetrable 

National Park (Harcourt and Fossey 1981; Aveling and Harcourt 1984; McNeilage et al. 2001, 2006; 

see Box 8). The following methods have been used to obtain full counts.

Sweep survey

In a sweep survey, a line of observers moves in the same direction to record all objects of interest 

during their progression. They are separated from each other by a short distance to minimise the 

probability that objects remain undetected. This methodology can also be used to count nests in 

Table 6. Western lowland gorilla dung defecation/dung pile 

production rates 

Measurement Age-class Estimate (range)

Dung piles/day Silverback
Subadult

5.03 (3.99–10.64)
5.57 (2.08–12.03)

Defecation events/day Silverback
Subadult

4.30 (1.82–8.71)
4.36 (2.46–9.26)
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plots of predetermined size. This approach is successful only if the species to be surveyed leaves 

a trail on the ground that trackers can follow easily to locate nest sites or the apes directly. This 

is limited in applicability to particular habitats, such as those with an herbaceous understorey. 

Attempts to survey the Cross River gorillas in Nigeria have been problematic, for example, as feed-

ing trails could not be followed (Oates pers. comm.). 

Counting known individuals 

Objects to be sampled: Individuals

Sampling approach: Direct observation

Auxiliary variables: None needed

In only a very few cases it has been possible to identify and monitor all individuals through ongoing 

observation over time. This approach is only possible in relatively small study areas where animals 

have been habituated to human observers and are regularly followed by researchers or wardens. 

True densities can be estimated from these counts, if range size information is also available. 

Counting recognisable individuals is used in long-term studies of apes at forest clearings or baïs in 

northern Congo (Magliocca et al. 1999; Parnell 2002; Stokes et al. 2003). Although it is not possible 

to determine the density of individuals without information on ranging patterns, mark-recapture 

methods have been used to monitor population trends in a gorilla population (Caillaud et al. 2006). 

However, this approach is limited to particular situations (e.g., Kalpers et al. 2003) and is men-

tioned in this chapter for reasons of completeness only.

Box 8. Sweep survey method used to survey the mountain gorilla population in 
Bwindi Impenetrable National Park, Uganda (McNeilage et al. 2006)

The park was divided into small sectors (approx. 5–10 km2), centered around camp sites and access points. Six teams, 

consisting of trackers and team leaders, traversed the park systematically. One team was assigned to census each sector, 

proceeding such that no more than 3 days were left between the completion of work in one sector and the beginning 

of work in the next contiguous sector to avoid the possibility of missing groups of gorillas as they range through their 

habitat. Each sector was searched by walking an irregular network of reconnaissance routes across the area. The actual 

route walked was determined largely by the terrain and the availability of existing trails, while ensuring that the distance 

between adjacent routes was never greater than 500 to 700 m so that no area was missed which could have been large 

enough for a gorilla group to spend more than one week in it. Gorillas construct a fresh nest each night to sleep in, and 

when recent gorilla trail (less than 5–7 days old) was found, it was followed until nest sites were located. Using topographic 

maps along with GPS readings every 250 m, compass and altimeter readings, each census team mapped as accurately 

as possible all paths taken and gorilla trails followed. Thus it was possible to ensure that all groups were found and that 

none was counted twice, and to distinguish similar sized but distinct gorilla groups found close to each other. At each nest 

site, nests were counted and measurements of dung size were made along with the presence/absence of silver hairs, to 

establish the age-sex composition of the group. Teams aimed to find at least three nest sites for each group to confirm the 

composition of each group, since individual nests or dung could be missed at one nest site. Dung size categories used 

were as follows: 

Adult male (SB): > 7.2 cm (with silver hairs)

Adult female or blackback male (MED): 5.5–7.2 cm

Juvenile/sub adult (JUV): < 5.5 cm (sleeping in own nest)

Infant (INF): generally < 4 cm (sleeping in mother’s nest)

Juvenile (age 3–6 years) and subadult (6–8 years) age categories were combined, since previous experience indicated that 

dung sizes do not give sufficiently precise information to distinguish these two categories. Young individuals construct-

ing their own nests were always considered here as the combined category juveniles/subadults, and not infants. In the 

absence of infant dung, adult female nests could not be distinguished from those of a comparable sized subadult (black-

back) male, and so were classified as ‘medium’.

Dung of young infants (less than about one year old) is rarely found in nests, and so the number of infants in the popula-

tion is underestimated by these methods. However, a correction factor can be calculated for this, based on the fact that 

previous censuses of groups with known composition have shown that approximately one-third of infants are missed in 

this way (Schaller 1963). This correction factor was applied to the total number of infants in unhabituated groups.
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2.8. Mark-recapture surveys

Objects to be sampled: Individuals, DNA

Sampling approach: Direct observation

Auxiliary variables: None needed

The principal idea behind capture-recapture studies is that the proportion of individuals identified 

(“captured”) in a population during a first “trapping round” should equal the proportion of re-identified 

(“recaptured”) individuals in a second “trapping round” some time later (see Box 9). 

Capture-recapture methods can be used without physically capturing the animals (trapping of 

great apes is neither practical nor ethical) if the individuals can be systematically detected and 

identified. This can be done at a distance using individual physi-

cal traits, or using genetic profiles as determined from matter 

deposited in the environment, such as shed hairs and faeces. 

A wide range of methods exists. For reviews of techniques, 

assumptions and calculations, see Nichols and Conroy (1996), 

Borchers et al. (2002), or Ross and Reeves (2003). A number of 

free software packages are also available for data processing 

(see Southwood and Henderson 2000, and see below). 

Capture-recapture methods require that markers are not lost 

during the study and are always correctly recognised. Recent 

methods have been developed to deal with violation of this 

assumption, and were developed in part to address problems 

of DNA capture-recapture (see Lukacs and Burnham 2005 a). 

Basic analyses assume that all animals have an equal prob-

ability of capture, but analysis techniques also exist that allow 

capture probability to vary for individual animals or subsets of 

the population (heterogeneity), through time or capture history 

(behaviour). The duration of sampling should be short enough 

to assume a closed population if mark-recapture techniques 

are to be used to estimate abundance, not just to estimate 

survival, mortality or other population parameters. Genetic and 

camera-trap capture-recapture studies have been used for a variety of forest-dwelling species 

(e.g., Karanth and Nichols 1998; Mowat and Strobeck 2000; Henschel and Ray 2003; Goswami 

et al. 2007). These methods could potentially be applied to great apes. However, individuals do not 

mix randomly within a population, but occupy home ranges. Consequently there would be a large 

capture heterogeneity between individuals. Although, non-standard capture-recapture models 

have been developed for similar situations, currently there is no standardized method applicable 

to great apes. 

Genetic minimum counts and capture-recapture 

Objects to be sampled: Dung (DNA)

Sampling approach: e.g., Tracking

Auxiliary variables: None needed

In recent years, non-invasive genetic sampling has been increasingly used for capture-recapture 

studies and applied to a variety of species (see review in Lukacs and Burnham 2005 b). First of all, 

a minimum number of apes in a given area can be determined simply by counting the number of 

“fingerprinted” individuals identified by their DNA. Secondly, estimating abundance using DNA-

based capture-recapture methods is likely to be most useful for relatively small populations (up to 

a few thousand individuals), which is the case for most great ape populations. The principle is the 

same as for individuals recognised by physiognomic characteristics: the DNA of each individual is 

unique and can be “fingerprinted” from dung or hair. As with other approaches, sampling design 

is important, and will be dependent on biology of the species, size of the area, timeframe, and the 

financial and human resources available. 

Box 9. The principle of 
capture-mark-recapture 

There must be at least two rounds of trapping in a given 

population. During the first round, a total of n1 different 

individuals are “caught” and identified. In the second 

round, we catch a set of n2 individuals from which m2 

individuals are individuals captured already in the first 

round. In this case, we can expect that the ratio of ani-

mals caught during the second round (m2) to the total 

number of animals captured on the second round n2 

equals the ratio of the number of animals available for 

capture (or number caught during the first round) to the 

total population:

^
m2

N total=
n1 * n2
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In general, signs of animals are searched for, and non-invasive samples collected. For great apes, 

faecal samples tend to be the most reliable source of DNA. Samples of approximately 5 g should 

be as fresh as possible (e.g., from fresh or very recent night nests) and stored appropriately to 

prevent degradation of genetic material in a tube containing ~30 ml ethanol. The day after col-

lection the faecal bolus should be transferred into fresh silica tubes for further drying (Nsubuga 

et al. 2004). Samples are then typed for highly variable genetic markers to discriminate individuals. 

Most current studies rely on microsatellite loci, since these are short and therefore amplifiable from 

non-invasive samples, easy to type by performing length discrimination, and highly variable (see 

Di Fiore 2003 for discussion of different genetic markers). Most studies report the number of unique 

“genetic fingerprints” (the composite genotype of the specific alleles at the different microsatel-

lite loci) as the minimum number of individuals in an area (e.g., Bergl and Vigilant 2007). However, 

genetic fingerprinting can also be used to “mark” individuals for capture-recapture analysis.

A major issue with DNA-based capture-recapture is the possibility of genotypic errors. Therefore, 

studies should follow the stringent protocols developed for low quality and quantity samples 

(Taberlet and Luikart 1999; Taberlet et al. 1999; Mills et al. 2000; Morin et al. 2001; Waits 2004). 

Ideally an assessment prior to the actual study should determine enough variable microsatellite 

loci to establish a high probability of identity discrimination (Waits and Paetkau 2005). Recently, 

a Bayesian method of population size estimation was applied to non-invasive capture-recapture 

data, and showed that genotyping errors did not substantially bias population size estimates and 

furthermore allowed for multiple sampling sessions, which had previously been a limitation of tradi-

tional capture-recapture methods (Petit and Valiere 2006). In addition, closed population capture-

recapture models have been developed to account for genotyping errors (Lukacs 2005; Lukacs 

and Burnham 2005 a, 2005 b). Other models have been developed to estimate survival, emigration 

rates, fecundity and population growth in open populations (Nichols 1992), and a variety of soft-

ware packages exist for capture-recapture analysis:

Mark http://www.phidot.org/software/mark 

M-Surge http://www.cefe.cnrs.fr/BIOM/en/softwares.htm 

Popan http://www.cs.umanitoba.ca/~popan/ 

Online forum for analysis of data from marked individuals www.phidot.org/forum. 

As with all other survey methods, we strongly recommend consulting a professional statistician 

who is familiar with these methods, to both design a DNA-based capture-recapture survey, and to 

process the data collected.

Camera trapping

Objects to be sampled: Individuals

Sampling approach: Random or systematic placement of cameras

Auxiliary variables: None needed

Camera trapping has become an increasingly popular tool by which wildlife managers assess spe-

cies’ presence in a given area, monitor population trends, and identify individuals. In theory, if all 

individuals caught on camera are positively identified then capture-recapture analytical tools can 

be used to estimate population size (Karanth and Nichols 1998).

Capture history can be synthesized in a binary matrix that is fed in turn into standard capture-

recapture software to produce a population estimate (see Sanderson and Trolle 2005). However, as 

mentioned under 2.8, the non-random distribution within ape populations violates a basic assump-

tion of standard capture-mark-recapture models. Further method development is needed before 

this could be applied to apes.

Camera trapping may also be difficult to apply because apes use three-dimensional habitats (oran-

gutans are the least terrestrial of all). That said, gorillas and chimpanzees have been identified in 

the Ndoki forests via camera traps by people familiar with individual study animals (Sanz et al. 

2004; Breuer pers. comm.). Although abundance estimates have not yet been calculated from 

those data, accumulation curves and comparisons with data on habituated groups indicate that all 

apes in a region could be effectively recorded with these devices (Morgan and Sanz pers. comm.). 

http://www.phidot.org/software/mark
http://www.cefe.cnrs.fr/BIOM/en/softwares.htm
http://www.cs.umanitoba.ca/~popan/
http://www.phidot.org/forum
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This approach also has potential for ape surveys, however, further evaluation and development are 

needed before this method can be applied routinely. 

2.9. Home range estimator

Objects to be sampled: Individuals, signs 

Sampling approach: e.g., Tracking

Auxiliary variables: None needed

Home range size can be used to estimate the number of ape communities resident in a certain 

area. When combined with the average number of individuals in a community, and knowledge of 

the extent of home range overlap, this measure can be used to estimate population size over large 

areas.

The first use of home range size to estimate ape population size dates back several decades (e.g., 

Reynolds and Reynolds 1965). Bermejo et al. (2006) used ranging data from several adjacent gorilla 

groups in the Republic of the Congo; first to estimate home range size and overlap, and second to 

estimate gorilla density. The principal idea behind this approach is to track the positions of individ-

uals belonging to the same group over time. This may be done through direct observation or signs, 

such as nests or camera images. A broad variety of statistical and non-statistical approaches exist 

to then derive home range size estimates from these location data (e.g., minimum convex polygon, 

kernel density estimation). When properly applied, this approach should provide a reliable estimate 

of ape density, which can be used to confirm estimates derived from other approaches or to cali-

brate other methods. However, this method could prove difficult to implement for apes with highly 

overlapping ranges (Singleton 2000).

Home range size and overlap can differ enormously over different spatial scales. In orangutans, it 

also differs between sexes and probably with age. That means that home range size and number 

of community members have to be estimated in a representative manner for a specific survey area 

(Singleton 2000). Extrapolation of home range size will likely yield biased results. Although this 

method may have potential for assessing ape population status, it needs further development, 

before it can be used routinely. 

2.10. Interview techniques

Objects to be sampled: Verbal information 

Sampling approach: Questionnaire 

Auxiliary variables: None needed

Interviews with hunters, local villagers, and/or officials from in-country governmental organizations 

are useful for obtaining information on the perceived presence of apes over large areas, and can be 

accomplished relatively rapidly and economically (Sugiyama and Soumah 1988; Hoppe-Dominik 

1991). 

However, information gathered in interviews is often inaccurate, as it tends to be out-dated and 

interviewee reliability is notoriously difficult to assess. Nevertheless, treated with caution, inter-

views can be a useful preliminary step to conducting a field survey, or to obtaining information to 

supplement field surveys. 

There are two main types of interviews: (i) mailed-in questionnaires or (ii) face-to-face interviews. 

In the former case, a questionnaire is prepared in advance and is sent to targeted people work-

ing in the selected area. The latter involves conducting interviews at either randomly or system-

atically selected sites. Interviews should be structured or semi-structured. Both interview types 

cover specific questions or topics, but with the possibility of open discussion in semi-structured 

interviews (Bernard 2002). To prepare for face-to-face interviews, it is helpful to learn the local 

names of each primate species thought to occur in the area, to have photographs or drawings of 

specimens and, if possible, recordings of their vocalisations. To confirm the presence of a spe-

cies, there should be concordance between the name, identification of species in the pictures, and 

description of its behaviour, given by the interviewee without any leading questions asked by the 

interviewer. Interviews are generally more reliable when confirming absence, as opposed to pres-

ence. Presence reports should always be verified first hand.



22

2.  Is the rough encounter rate of nest groups or other signs that will be used to estimate 
density already known?

3.  Decide on the target coefficient of variation you require for a survey. If a survey or series 
of surveys is to be used for monitoring purposes, then a power analysis should be conducted 
to estimate the probability of being able to detect a trend given the potential variability in 
the data and the given monitoring design (same can be said for methods based on mark-
recapture, etc.). Using the encounter rate derived from a pilot study, calculate how many kilo-
metres of transect you would need to estimate density of nest groups. (Use the formula found 
in Chapter 7, section 7.2.2.1. of Buckland et al. (2001). Is the number of kilometres feasible 
given the time and resources available?

1.  Are all animals in the population known individually and can they be found within a few 
weeks and/or are they are relatively few in number, make night nests, and found within a 
small area?

If yes, Carry out full count of known individuals, or use sweep sample to cover the whole of the 
area of interest. 

4. You cannot calculate density without enormous cost. Therefore you cannot estimate num-
bers of animals using transect methods. Would you be able to use genetic methods?

5. Are there sufficient resources to cover the whole area using recce walks?

No

No

No

No

No If no, go to 2.

Conduct a pilot study 
consisting of a few 
transects throughout the 
area of interest in order 
to obtain a rough idea 
of encounter rate (this 
should only take a couple 
of weeks). Then go to 3.

If no, go to 4.

If no, consider index 
methods (go to 5).

If no, consider interview-
only surveys.

If yes, design a transect-based survey using a combination of the DISTANCE programme and 
either ArcView or ArcGIS. Implement it using trained field teams; use the results to estimate the 
ape population in the area surveyed.

If yes, and if you have access to trained staff and a partner laboratory to process samples, con-
sider designing a survey using genetic markers and implement it. (NB: Pilot study is advised  — this 
may or may not be more costly than transect methods).

If yes, create a recce sampling design using a combination of ArcView or ArcGIS and the 
DISTANCE programme and implement it using trained teams in the field. Results will provide a 
distribution map and relative abundance over the area.

Yes

(See also Section 3.2 “Methods: what to do and what order to do it in” in Hedges, S. and D. Lawson. 2006. Dung survey standards for 
the MIKE programme. CITES MIKE Programme, Nairobi, Kenya http://www.cites.org/eng/prog/MIKE/index.shtml)

2.11. Suitability of different methods

As pointed out earlier, there is no “best” great ape survey technique. Here we present a decision tree that can be used to determine which 
method to use in different circumstances.

Decision Tree: Surveys and Monitoring — what to do when

I. First let us assume you need to know how many animals are present in the population.

Yes

Yes

Yes

Yes

II. You cannot estimate how many animals are present in the population and/or you do not need to know at this 
point. However you can calculate area of occupancy (distribution maps) and relative abundance.

http://www.cites.org/eng/prog/MIKE/index.shtml
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Annex I 
Contacts and Resources for Further 
Information and Funding

Ape Populations, Environments and Surveys (A.P.E.S.) 
Database
http://apes.eva.mpg.de/

Email: apes@eva.mpg.de

DISTANCE
http://www.ruwpa.st-and.ac.uk/distance/

USFWS Great Apes Program
http://www.fws.gov/international/rfps/gahow.htm

Biodiversity Conservation and Habitat and Ecosystem 
Protection Donor Newsletters
http://www.bothends.org/service/stand4.html

Conservation Information Service (CIS)
CIS links persons developing and managing conservation-

related projects with donors who share their goals. 

http://www.primate.wisc.edu/pin/cis/

FAO Collaborative Partnership on Forests
Forest Funding News

http://www.fao.org/forestry/site/33747/en/

Society for Conservation Biology
Listing of granting Institutions and contact information for sup-

port of research and other conservation activities in Africa.

http://www.conbio.org/sections/Africa/africafunding.cfm

Tropical Biology Association Funding Database
www.tropical-biology.org/alumni/database/main.php

Annex II 
Online Sources of GIS Data

Raster data
USGS Geographic Data Download/Earth Resources 
Observation and Science (EROS)

http://edc.usgs.gov/

Topographic data 1km

Digital Elevation Model (DEM) — National Geophysical Data 

Center (NGDC)

http://www.ngdc.noaa.gov/mgg/topo/globe.html

Topographic data 90m

SRTM Data — The CGIAR Consortium for Spatial Information 

(CGIAR-CSI)

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp

Vector data
World Base Map — ESRI

http://arcdata.esri.com/data_downloader/
DataDownloader?part=10200 (vector)

The GIS Data Depot (requires Login)

http://data.geocomm.com/catalog/

Collection of GIS data
University of California, Berkeley

http://biogeo.berkeley.edu/bgm/gdata.php

The CIESIN World Data Center for Human Interactions in the 
Environment

http://sedac.ciesin.columbia.edu/wdc/index.jsp

Africover — Food and Agriculture Organisation of the United 

Nations (requires Login)

http://www.africover.org/system/africover_data.php

Carpe Data Explorer — Central African Regional Program for 
the Enviroment

http://maps.geog.umd.edu/metadataexplorer/explorer.jsp

Global Land Cover Facility — University of Maryland

http://glcf.umiacs.umd.edu/index.shtml

Maps (not georeferenced)
Perry-Castañeda Library Map Collection

http://www.lib.utexas.edu/maps/
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